유체역학 6판 조광래 외2명 해법(1-3)
페이지 정보
작성일 21-05-05 07:23
본문
Download : 유체역학및실습.zip
유체역학 6판 조광래 외2명 해법(1-3)
ρ υ
레포트 > 교육계열
⎛ ⎞
for a Control Volume
ρ υ
⎜ ⎟
⎝ ⎠
use of all of them in certain fluids problems, e.g. the #1 form for small elements, #2 form
Σ = ⎢ × ⎥
popular in this chapter.
dt
3.1 Discuss Newton’s second law (the linear momentum relation) in these three forms:
dt dt
유체역학 6판 조광래 외2명 솔루션(1-3)유체역학 6판 조광래 외2명 솔루션(1-3)유체역학 6판 조광래 외2명 솔루션(1-3)유체역학 6판 조광래 외2명 솔루션(1-3)유체역학 6판 조광래 외2명 솔루션(1-3)
3.2 Consider the angular-momentum relation in the form
What does r mean in this relation? Is this relation valid in both solid and fluid
Chapter 3 • Integral Relations
for rocket propulsion, but the #3 form is control-volume related and thus the most
유체역학 6판 조광래 외2명 해법(1-3)유체역학 6판 조광래 외2명 해법(1-3)유체역학 6판 조광래 외2명 해법(1-3)유체역학 6판 조광래 외2명 해법(1-3)유체역학 6판 조광래 외2명 해법(1-3)
( )
유체역학 6판 조광래 외2명 솔루션(1-3)
Solution: These questions are just to get the students thinking about angular
M ∫ r V
Σ = Σ = Σ = ⎜ ⎟
rO is a better notation.
the moment-center O to the elements ρ dυ where momentum is being summed. Perhaps
Download : 유체역학및실습.zip( 62 )
⎢⎣ ⎥⎦
system





Solution: These questions are just to get the students thinking about the basic laws of
F a F V F ∫ V
mechanics? Is it related to the linear-momentum equation (Prob. 3.1)? In what manner?
순서
d d
설명
momentum versus linear momentum. One might forget that r is the position vector from
O ( )
⎡ ⎤
system
mechanics. They are valid and equivalent for constant-mass systems, and we can make
m d m d d
다.